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Abstract 

We study the classical solutions of bosonic superconducting strings for 

quartic and Coleman-Weinberg effective potentials. We map the pa- 

rameter space of solutions, and discuss and quantify back reaction and 

critical currents. The quench transition is generally first order. We con- 

sider static loop configurations in which electromagnetic stress balances 

the loop string tension. Such static loops are shown to exist only in 

a very small region of the parameter space. We give accurate results 

for the energy per length of a non-superconducting gauged string for 

arbitrary ratio of Higgs to vector mass. 
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I. Introduction 

Recently there has been considerable interest in superconducting cosmic strings. 

First proposed by Witten’, these are cosmic strings endowed with dynamical prop- 

erties which allow an effective Higgs mechanism for electromagnetism to occur on 

the string. There are several novel ways in which such objects might be detectedr, 

or have substantial effects on the formation of structure in the early Universe3. Su- 

perconducting strings are of two varieties: fermionic or bosonic. In the fermionic 

case, superconductivity arises because of the occurrence of charged Jackiw-Rossi 

zero modes which effectively behave ss Nambu-Goldstone bosons in 1 + 1 dimen- 

sions and give a longitudinal component to the photon field on the string. In some 

sense, this is a “natural phenomenon” in that it relies only upon certain systematic 

conditions being met, e.g., the presence of charged fermions with particular cou- 

plings to the vortex Higgs. The rest is guaranteed by topology, anomalies, index 

theorems and the like. 

Bosonic superconductivity requires that some charged field develop a VEV (vac- 

uum expectation value) in a region transversely localized on the string. This is a 

dynamical effect and must be engineered (in the scalar potential) to occur. It then 

becomes of interest to inquire how natural the phenomenon is, i.e., does one have 

to fine tune the parameters to have such a condensate form, or is the parameter 

space where it occurs large? Furthermore, interesting dynamical questions arise, 

e.g., what determines the saturation current and does the system undergo a first 

or second order phase transition when the critical current is exceeded and the su- 

perconductivity quenches? Are there solutions with and without significant back 

reaction of the charged condensate upon the vortex itself? Can a superconducting 

cosmic string loop with a sufficiently large current and attendant electromagnetic 

field energy become stabilized against its string tension, i.e., is there a stable “float- 

ing solution”‘~6? The latter question is a very delicate one because it involves the 

various parameters of the theory in a nontrivial way, and it is the question which 

led us to initiate the present study. 

The aim of this work is to give a comprehensive analysis of the microphysical 

phenomenon of bosonic superconducting strings. We do this by the use of ac- 

curate variational solutions for the various scalar and vector fields, an approach 
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which significantly reduces the number of degrees of freedom and makes the anal- 

ysis tractable. In the cases where we have direct comparison with analytic or very 

accurate numerical results there is excellent agreement between those results and 

ours. In short, we trust the results of our variational calculation. 

The paper is organized as follows: in Sec. II, by using a variational analysis, we 

address the question of which regions of parameter space (for the scalar potential) 

permit bosonic superconducting cosmic strings; in Sec. III we study the dynamics 

of bosonic superconductivity; in Sets. IV and V we address the questions of critical 

currents and the possibility of floating or static solutions; in Sec. VI we translate 

our analysis from the natural space of dimensionless parameters we introduce to the 

parameters of the scalar potential; in Sec. VII we summarize our work and make 

some concluding remarks. In Table I we summarize the dimensionless parameters 

we introduce to simplify our analysis, and in Table II we summarize the constraints 

which must be satisfied for a bosonic superconducting vortex solution to exist. 

II. Variational Analysis of Bosonic Superconduct- 

ing Cosmic Strings 

Vortices arise when the first homotopy class IIi(G/H) associated with a symmetry 

breaking G + H is nontrivial. Typically IIr (G/H) is the set of integers correspond- 

ing to the winding numbers of scalar field configurations. The simplest realization 

of this is the breaking of U(1)’ by a complex scalar field. If U(l)’ is gauged we 

have a Nielsen-Olesen flux tube6; if not we have a global or “axion” string’. For 

even the simplest quartic potential admitting symmetry breaking and flux tubes the 

classical profile of the solution is not completely known, nor would its knowledge 

be expected to be of great utility. There have been previous studies which obtain 

exacts or very accurategJO results, and we will compare our results to these to test 

our variational ansatz approach. However, in the application to bosonic supercon- 

ducting strings’ no such results exist, and we must test our variational ansatz by 

checking the stability of our results when additional terms are added to the ansatz. 

We begin with a variational study of the usual non-superconducting flux tubes 

(of both varieties), and then examine the effects of bosonic superconductivity. The 
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Lagrangian density that describes the interactions of a V(l)’ charged scalar field @ 

in a general potential V*(G) takes the form: 

LQ = -;F;uF"v + (D,@)'(D'ip) - v*(a) 

where D, = a, - iqA’,,, FLY = &Ah - a,,A:, AL is the U(l)’ gauge field, and q is the 

charge of the Q field. With cylindrical symmetry the Hamiltonian (per unit length 

in the .a direction) is: 

(henceforth we use fi to designate a Hamiltonian per unit length). Here B’ is 

the magnetic field associated with the vortex. To study the global case we set 

q = 0 (whence B’ = 0). Following the standard conventions, we write Q (and other 

complex scalar fields) ss: 

@ = (41 + ih)/Jz 

where c5i and & are real fields. Note that this convention (the factor of l/a) is 

used so that the quantum theory has the usual equal-time commutation relations. 

Although our analysis will be classical, it is important to track the l/A factor in 

order to compare with other results. 

The general vortex solution has the form: 

ip = +p 

where P(r) is real, and 0 minimizes the potential V(v) = V~(ve~q/fi) (we distin- 

guish between the potential V*(a) for the complex field and the potential V(u) for 

the real component to preserve consistency with the standard normalization con- 

ventions). Requiring @ to be single-valued upon traversing a circular path restricts 

the possible changes in phase, i.e., An = 27rN, where N is an integer. We may then 
take the phase of @ to uniformly wind over the path: r] = Nl?. At the boundaries 

we have P(r + co) + 1 and P(r + 0) + O(rlNI). Also, in the gauged case we have 

A’,(r + co) + N/qr and Alg(r -+ 0) + O(r). 
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Now, P(r) can in principle be determined from the equations of motion asso- 

ciated with Eqn(2.1)“‘J1, but it is simpler to adopt a variational approach. Using 

a combination of powers of exponentials of the form e-p’ one can always engineer 

a function with the above short and long distance limits required for P(r). For 

example, for N = 1 we choose: 

P(r) = (1 - CP’) (2.5) 

We shall consider the case N = 1 throughout the rest of this paper. This is the 

simplest choice for N, and in the gauged case there is a large portion of parame- 

ter space (corresponding to vortices that exhibit Type II superconductivity in the 

Ginzburg-Landau theory’*) in which a vortex with INI > 2 is unstable and de- 

cays into INI = 1 vortices lo. Later we argue that global strings with INI > 2 are 

unstable, which further motivates restricting our analysis to N = 1 vortices. 

A. The Global Case 

Adopting expression(2.5) as a variational ansatz we find the expectation of the 

Hamiltonian in the ungauged U(1)’ case, expanding in powers of e-J”, to be: 

< E;Q > = tr”2 + *u21&X) + V(tJ)(KR&) 
m 

+ 27r 
J 

00 

r drV’(v)(-ve-“) + 27r 
0 I 0 

r dr~V”(v)(vZe-2p’) + . . . 

or, upon performing the integrals in the potential terms: 

( > l?Q = $rv~ + *tPr&L, A) + V(v)(*RL) + 2?r c (-ly;y@) (2.7) 
“=I 

Here “RI& is the infinite area normal to the z-axis and this term which acts as 

a cosmological constant is the dominant contribution to the energy. Hence the 

variational calculation for v requires that v = V, where V’(U) = 0, and the vanishing 

of the effective cosmological term requires &s usual that V(O) = 0. The term I#@, X) 

is log-divergent in the global case with X representing a large-scale cut-off. Upon 

varying with respect to p the X dependence disappears and one has: 

wd) = 1 
afi F l+.w’ 
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So upon variation of Eqn(2.7) we obtain the extremal solution for p: 

p2 = 4c (-1)“0”-*V[~l(q 
?l%Z! n=2 

(2.9) 

where 6 solves V’(O) = 0 (note that the n = 1 term in the series is then zero). 

The dominant contribution to the energy per length is typically the angular 

contribution, 18, which is easy to calculate for arbitrary N. We take 

@ = $1 - e-w)NeiN@ (2.10) 

as our ansats. For JJ >> 1 we have: 

Id = N* 
fix (1 - e-v)*N 

Y 
dy x N*ln(pLX) (2.11) 

We then see, in our variational approximation, that the ratio of the energy per length 

of a vortex with vorticity INI to that of INI vortices with unit vorticity (vorticity 

is conserved) is = N, and the decay into INI vortices each of unit vorticity is likely 

for vortices with N 2 2. 

Therefore, upon substituting Eqn(2.9) into Eqn(2.7) the mass per unit length 

of the N = 1 vortex takes the form: 

( ) 
iI* = 

( 
~+I~(p,X))ro?=(~+ln(pA))7r~* (2.12) 

(note the normalization conventions chosen here are the standard ones; if one nor- 

malizes (‘P) = u’ then one obtains for the logarithmic contribution to the energy 

per unit length: 2 ln(pX)&*). 

Typically fi is of order the mass of the Higgs at the minimum of the potential. 

For example, choosing the usual form for the scalar potential, 

X*,QI’ 3m; 
V*(@) = -m:pl* + QI + 2x 

a 
(2.13) 

whence: 

V(u) = -ry + i$ + 2 Q (2.14) 
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yields fl* = 3!mi/Xe and we find: 

@2 = VW 2VV”‘(ii) tPV”“(ti) 
-- a 

2 27 
+ 

96 
0.62 m; (2.15) 

B. The Gauged Case 

In the case where U(1)’ is gauged we obtain the expectation value of the Hamilto- 

nian: 

(- > I?* = $“* + 7dIB(@,U) + (P2/2) + V(V)(RgJ (2.16) 

00 

+ 2n 
/ 

m 

r drV’(u)(-uemCr) + 2~ 
0 / 0 

r drkV”(v)(v*e-*@‘) + . . . 

where now the difference with the global case is the nontrivial dependence in 

Id(p, u) + (B’*/2) upon v/p, and it is not possible to write a systematic solution for 

p. Here < B’*/2 > represents the magnetic field contribution. 

We now extend our variational analysis by making an ansatz for the gauge field: 

where h is another variational parameter. This ansatz for A’, corresponds to a 
magnetic flux tube of width - h-i and total flux 2n/q. It is now convenient to 
define the following dimensionless parameters: 

-4 a=-..--; 
CL* 

b _ y* - !Y - “m,:; SC!! 
ma A* m, h 

(2.18) 

where rnH is the physical mass of the Higgs particle (mH = @me), and mv = qt? 

is the vector boson mass. For b > 2 (b < 2) the vortices correspond to Type I (Type 

II) superconductivity in the Ginzburg-Landau theory. Physically, the width of the 

vortex is - CL-’ - firnil, and s is - (width of the magnetic flux tube)/(width of 

the vortex). 

Using our previous ansatz for @ and our ansatz for the gauge field we readily 

find the angular integral contribution to the energy per length: 

IO = G(s) =ln(3’(s + 4)*(2s + 3)‘(9 + 2)*/2ir(s + 2)(s + l)‘(s + 3)‘) (2.19) 
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Of course, there is no large distance logarithmic divergence here since the gauge 

field cancels the contribution of the Higgs at large distances. The contribution to 

the energy from the scalar potential is found to be (89/288)1rU*a. and the energy 

in the magnetic field is given by: 

-= 
4xii*ln( g) 

abs* 

Collecting terms, the energy per length of the gauge vortex is: 

(ii*) = m*[; + G(s) + 3 + ;a] 

(2.20) 

(2.21) 

where 8 is determined by V’(O) = 0, and se before V(U) = 0. From Eqn(2.21) and 

Eqn(2.18) we obtain the variational equations: 

aG(s) 89a ---= 
a8 1445 

0 

y - (8/abs3)ln(i) = 0 

(2.22) 

(2.23) 

by varying with respect to the parameters /.J and h, respectively. Subtracting these 

equations gives the simple relation: 

These equations can be solved by selecting a value for s, solving for a in Eqn(2.22), 

and using the above relation to obtain b. The energy per length of the vortex is 

easily computed in this manner, and is plotted as a function of b in Fig. 1. In 

addition, we plot the parameters a and s, as a function of b, in Figs. 2 and 3. 

For b << 1 (equivalent to q -+ 0), the energy per length is dominated by the 

angular kinetic energy. We also see from Fig. 2 that a = rni/p* approaches the 

value we obtained in the global case (o c= 1.6), which is reassuring. In general, a 

is of the order of unity. Near b - 1, where all the terms in the Hamiltonian are 

important, we find agreement of our results with those of others s$ to better than 

2%. Over the entire natural range of b (0.01 5 b 5 100; to be discussed later) 

we find agreement of our results with the semi-quantitative results of Bogomol’nyi 
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and Vainshteini”, giving us confidence that our energy per length, and hence our 

variational analysis, is accurate. As a further check, we also added another term to 

the scalar and vector field ansatze; the energy decreased by KS 1% for b N 1, and 

smaller changes were observed for all other values of b. 

C. The Superconducting Condensate 

The discussion of this subsection is independent of the choice of global or gauged 

vortex. We now consider the bosonic superconducting cosmic strings which arise 

in a U(1) @ U(1)’ gauge theory with the general scalar potential’ for which the 

Lagrangian density takes the form: 

L = LB - +q- + (DpcT)‘(D’u) - UC(U) - floj*plz 

where D, = a, - ieA,, F,,” = &A, - &$,A,, and A,, is the U(1) gauge field. The 

field o carries U(1) (ordinary electromagnetic) charge e and no U(l)’ charge, the 

field @ carries no U(1) charge and U(l)’ charge q (we have not written the photon 

vector potential explicitly). We now obtain the Hamiltonian per unit length: 

where: 

(in this expression we have neglected the photon field). 

We presently assume that U.(o) is an unstable, quartic scalar potential, 

UJu) = -m~lu/* + &I4 

(2.27) 

and the overall stability of the theory against the breaking of electromagnetism (far 

from the flux tube) is controlled by this term and the f lol*lcPI* term in Eqn(2.25). 

The condition that U(1) remains unbroken outside the flux tube is that f02a2/2 + 

UC(o) has no global minimum for nonzero o. Nonetheless, the basis of bosonic 
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superconductivity is that in the core region in which (‘P) ---t 0 the f term no longer 

stabilizes the (I field, and it may be energetically favorable for a condensate to form. 

Of course, since (u) + 0 as r + co, it costs kinetic energy to allow the o field to 

develop a nonzero condensate at r -+ 0, and a priori it is not clear whether the gain 

in potential energy wins out over the cost in kinetic energy. 

Presently we assume that the terms involving the o field are sufficiently weak 

that they do not back react upon the Q field, and the (I condensate can be studied in 

the fixed background of the @ vortex solution just discussed. We refer to this as the 

concrete uortez approximation. Later we study the validity of this approximation. 

With standard normalization we introduce the real part of o as Re o = IL/& 

and U(u) = U,,(u/fi). The standard potential becomes: 

qu) = -I$* + hg 

We examine the properties of the equation of motion in the absence of supercon- 

ducting currents: 

d% 1 du 
g+;-&+m:u- 

x,u3 
- - fl@l% = 0 

3! 
(2.30) 

At this point it is very useful to introduce dimensionless parameters which rescale 

the various dimensionful parameters relative to the size of the vortex: 

a = &$ = arn:/rni; p = f~7*/2$ = SafjA*; 52 _ u2xo. p2 I Y = wr (2.31) 

where the additional relations follow from substituting in pL2 = mi/a. The equation 

of motion now becomes: 

65 lti 
dyz + ydy -iqPP(y)'- a]- ; = 0 (2.32) 

As y -+ 0 we Snd 5 -+ is + O(y*). For y 2 1 and 5’ << S(p - CZ) we have 

C* a &(y,@=$, and 

G2a e -*II&= 
Y@= 

(2.33) 
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in the limit yJzr, >> 1. Here Ks is a modified Bessel function of zeroth order. 

We also note that for a = p and y 2 1, 6s --) 6/y’. 

To investigate the dynamics of the superconducting condensate we make a vari- 

ational ansatz of the form: 

up, .z, r, e) = b”eP(1 + Icr + n’r2 + d’r3)ci+(*gt) 
fi 

(2.34) 

with four variational parameters as, K, K’, and K.” (we do not endow (I with vorticity). 

We choose four variational parameters so that convergence can be checked with the 

second and third order ansatz. This ansatz has the correct short distance limit 

and n-r represents the size of the o condensate. The fact that the charged field o 

acquires a vacuum expectation value in the core of the string signals that the string 

is superconducting and d(z, t) is a msssless mode which supplies the longitudinal 

degree of freedom for the photon on the string. 

To describe the essential physics we find it useful to consider a simple, truncated 

ansatz: 

with which we can discuss many results analytically. We presently use this ansatz 

and also make use of the previously obtained profile for the vortex field, a, to obtain 

the expectation value for the Hamiltonian: 

(ii) = (&) + +: + nfiy + T~$F(p/s) 
Here G is derived from U upon performing the cylindrical integration normal to the 

string axis. If, for example, U(u) has the polynomial expansion: 

U(u) = c u,un 
n e”cn 

then we have: 

quo) = 2 c $$. 
n even 

(2.37) 

(2.38) 
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The function F(z) represents the overlap of the ip profile turning on to its 

asymptotic value v over a distance scale p- r from the flux tube and the o profile 

turning off over a distance scale K-I. It takes the form: 

l - (1 +:j2p + (1 :z)2 = 1 [ z4, t 623 f 62’ 
z4 + 69 + 13z* + 122 + 4 1 . (2.39) 

where z G p/n w (width of the o condensate)/(width of the vortex). We see that 

F(z) is positive over its range and we further note the limits: 

FM c 3z2/2 (0 5 z 5 5); 

F(4 !2 z/3 (.5 5 z 5 2); 

W + 1 (z-co) (2.40) 

The full potential for both fields is: 

VQ,~(@,U) = 

XigV4 
V(v,u) = -miv*/2 + 41 - mitt*/2 + 

X,d 
T+ fvzu*/4 + 2x ? (2.41) 

The overall theory must be such that far from flux tubes the U(l)’ symmetry is 

spontaneously broken while U(1) remains unbroken. This thus leads to constraints 

on the parameters in Eqn(2.41). The most important constraint is that the ground- 

state has a true global minimum corresponding to (CT) = 0 and (Q) # 0. The 

condition for this is: 

(constraint 1.) 

and: 

fo2p - 3fmi 
A* 

> rnz or p> a (constraint 2.) 

(2.42) 

Note that a local minimum is still allowed at (u) = 3!ma/X, and (a) = 0. However, 

constraint (1) guarantees this to be a false vacuum. This potential also has an 

extremum corresponding to (u) # 0 and (a) # 0. However, this extremum can be 

the global minimum only if (u) is imaginary. 

We then find for G(Q): 
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Quo) = -!?p + +?g (2.44) 

Our problem is thus the minimization of the energy per length: 

E(Q,~) = 
1 
yu; + 

Afi(UO) + nfu%,2 
.a 8n2 FW4 

= -; [a~* -@F(z) - l] uo’ + “;;;y (2.45) 

Note that a nontrivial minimum will occur if the overall coefficient of ui is negative, 

or: 

CYZ* - Pz’F(z) - 1 > 0 (constraint 3.) (2.46) 

We can thus determine a lower limit to a. Using constraint (2) we have the 

condition: 

a~‘(1 - F(z)) - 1 > 0 (2.47) 

It is readily verified that the maz(z*(l - F(z)) = liw,, ~‘(1 - F(z)) = 7, and 

thus the lower limit to = is: 

1 
a:>- 

7 (2.48) 

[It should be noted that in his discussion, Witten considers the limit X, = 0 and 

Q m fl, and argues that the solution exists because the 2-dimensions.l Schroedinger 

equation with negative definite potential admits a normalizeable boundstate (in the 

Q = p limit this corresponds to a negative coefficient to u1 in the above potential). 

Strictly speaking, however, the absence of the X, term causes the overall theory 

to be unstable (constraint (1) cannot be satisfied). The region external to the 

vortex is a false vacuum and 00 grows without bound, eventually expelling the @ 

field to infinity; the vortex ceases to exist. Therefore, the X, term must always be 

present at some level and the normalization of uo is always determined as above. 

Moreover, such a term is induced by interactions and one cannot have the strict 

a = p csae without Coleman-Weinberg symmetry breaking by the u field in far 

vacuum. Indeed, we see below that our variational calculation picks out the family 

of solutions with a = p, except when a < l/7. Why is our result in apparent 
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conflict with the theorem that such solutions should always exist for any a including 

a -+ O? The answer is that our variational ansatz cannot probe the extreme weak 

potential case. We will see, however, that we obtain sufficient information about 

the parameter space that we can infer its structure as a ---t 0 by Witten’s analytic 

result.] 

We thus find the extremal solution for ui: 

u; = y (a - PF(z) - l/2) 

which is a valid solution provided it is positive. This is just a restatement of 

constraint (3). Substituting the solution for ui into the Eqn(2.45) gives the 

energy per length as a function of n: 

E(z) = -s (cd - Pz*F(z) - 1)’ 

which leads to the extremal equation for n: 

cm* - p [z*F(z) + z3F’(z)] + 1 = 0 (2.51) 

We have scanned over the parameter space defined by a, fi and z for solutions 

consistent with constraint (2), and constraint (3). The allowed solution space 

and the width of the u condensate are shown in Figs. 4 and 5. Our procedure 

consisted of choosing a value of 0, solving for a using Eqn(2.51) and then scanning 

over values of z, checking for consistency with the constraints. We can also obtain 

the equation for the outer boundary of solutions, parameterized by z, by setting 

uo’ = 0: 

B(z) = Z/z”P(z) (2.52) 

a(z) = P(z)F(z) + l/z* (2.53) 

The parameter space of solutions from the full ansatz Eqn(2.34) w&s also deter- 

mined. This was done by looking for a global minimum in the energy with ui > 0 

and p > Q. The outer boundary obtained using the full ansatz is also shown in Fig. 

4, and it is not significantly different from the boundary determined by our trun- 

cated ansatz. We also note that while the energy given by the full ansatz Eqn(2.34) 
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has converged to within a few percent, our simple ansatz can give an energy per 

length which differs from that of the full ansatz by - 50% for unfortunate choices 

of a and p. However, both ansatze yield energies that agree to within a few percent 

near a = p, which happens to be one of the most important reeions for the rest of 

this study. At this point we abandon the more complicated ansatz. 

The line of solutions corresponding to a = p is already known from Witten’s 

argument and it extends in reality down to Q = p = 0. We see that the parameter 

space of solutions is restricted for small Q and p and grows to the indicated wedge 

for larger values. Our definitions of a and p have been very convenient because 

the allowed parameter space, in the concrete vortex approximation, is independent 

of whether or not the string is gauged. However, it should be mentioned that if 

rnz and fa*/2 were normalized by rni, instead of by our variational parameter 

p*, global strings would have a fixed-wedge of allowable parameter space while the 

gauge strings would have a wedge of a size determined by the ratio of scalar and 

vector boson masses. The parameter space with this normalization is obtained by 

the mapping (a, PI -+ (ala, B/4, h w ere a can be obtained from Fig. 2 in the 

gauged case, and a G 1.6 in the global case. We then see, with this normalization, 

that the gauged and global strings have the same available parameter space for 

b s 0.1, and for b 2 0.1 the gauged parameter space can be significantly larger than 

the global parameter space. In Sec. VI we will discuss how one translates from a, 

p back to physical parameters in the scalar potential. 

D. Back Reaction onto the Vortex 

In the previous analysis we have viewed the Q background solution as fixed, i.e., the 

width of the vortex, n-r, is held 6xed as a parameter determined from the potential 

for Q alone. In this section we relax our concrete vortex approximation and vary the 

full Hamiltonian with respect to g to study the validity of this approximation. We 

also map out the regions of solution space where there are significant deviations from 

our concrete vortex approximation; fortunately, they occupy only a small fraction 

of the entire parameter space of solutions. Since the full Hamiltonian depends upon 

whether or not the string is gauged, we consider each case separately. 
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1. The Global Case 

The full Hamiltonian for the global string is: 

( > 
ii = T + 7&&(p) + 2n c 

(-1)“owqq 

“=l dn!/.G 

-s (cc,* - Pz’F(z) - 1)’ (2.54) 

It is now useful to introduce a new variational parameter which is the ratio of the 

value obtained in the concrete vortex approximation (E ps) to the true value of b. 

We thus introduce: 

Y = llO/PL; where 
pi = 4c (-l)“V+rV[“l(t?) 

n%! 
(2.55) 

n=2 

Also, we define 12, p’, and x’ to be ratios with ns, i.e., x’ = ps/tc = yz, and 

correspondingly, Q’ = a/y’, p’ = p/y”. Removing overall constant factors and 

additive constants we have the variational Hamiltonian in y and z’: 

(fi) = - lny + y2/3 - -$ (o’s? - p’z’*F(d/y) - 1)’ (2.56) 

We have also introduced the parameter 7 = 3&/fizX,; note the ratio no/ii has 

already been determined implicitly in the above discussion for the general quartic 

polynomial potential: 7 x 0.31&/X,. In the concrete vortex approximation, y = 1, 

the primed parameters coincide with the unprimed ones; this redefinition has the 

advantage of minimizing the y dependence of the additional term. 

The joint extremal equations in z’ and y are: 

ff’d* -P’ [z”F(z’/y) + ~‘“F’(z’/y)/~] + 1 = 0 (2.57) 

1 - y* + 2P’yWz’F’(~‘/y)/~ = 0 (2.58) 

where W = (a’~‘* - @‘z’*F(z’/y) - 1). W e a so 1 recover our previous constraints 

recast in the present variables: W > 0, and 0’ - a’ > 0. Note that since W > 0 we 

must have y > 1, i.e., the vortex is always larger than the size given by our concrete 

approximation. 

Upon specification of 7 the allowedvalues of a’ are restricted by constraint(l): 
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(2.59) 

We present in Figs. 6, 7, 8, and 9 both CX’ and p’ as a function of y for two choices 

of 7 : 10e3 and 10-s . These results were obtained by solvina for CX’ and p’ in the 

extremal equations and scanning over z’ and y (always checking that the constraints 

are satisfied). We see, ss a general rule, that back reaction can only be significant 

if the above inequality approaches equality. In other words, a necessary condition 

for back reaction to be important is: 

(2.60) 

This should come as no surprise since in this limit the vacuum energy associated 

with a u condensate is about the same as that associated with a @ condensate. We 

further see, upon comparison of the graphs with the same 7, that large values of y 

(i.e., significant back reaction) only occur when condition(2.60) is satisfied and: 

a’ tip ( or 2 _ 3f4 
m, - -1 xe 

For the choice 7 = lo-‘, lo-“, and 10-s we also show the or, p’ parameter space 

where y 2 1.2 in Fig. 4. We see that our concrete vortex approximation is valid 

over most of the parameter space, and solutions with even mild back reaction are 

very rare, and are restricted to be near the line a = 0. 

2. The Gauged Case 

The full Hamiltonian per length for the gauged string is: 

+nu*G(s)+ absl 
4ffci*ln( g) + 89 -* 

-TV 
288 

a-z (ax? - @'F(z) - 1)*(2.62) 

We redefine variables as in the global case, again use y = ps/p, and further define 

s’ = sy. We replace a with a’y2, where u’ is the value of a in the concrete vortex 

approximation. Dropping constant factors and additive constants we now have the 

variational Hamiltonian in y, z’, and s’: 
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(k) = G(s’/y) + s + ;ary2 - 3 (a’zf2 - @zf2F(z’/y) - 1)’ (2.63) 

We have defined 7 as before, and in this case 7 = X*/2X.&. The constraint on o’ 

which follows from constraint 1 now takes the form: 

The method of solution in this case was to numerically search for a global min- 

imum in the energy. Results very similar to the global case were obtained. Again, 

the main result is that if we are to have a superconducting solution and y >> I, 

we require: 

d-6 
XQ - x,; 

and a’ m P’ (2.65) 

To summarize the back reaction issue we can say that for all but a small portion 

of the parameter space of solutions back reaction of the o condensate upon the 

vortex itself is not important. Only for a = p is back reaction potentially significant. 

E. Coleman-Weinberg Effective Potentials 

It is interesting to consider the possibility of vortices and associated superconduc- 

tivity, in the case of Coleman-WeinbergI symmetry breaking. Here the fields @ and 

o have zero renormalized mass but the radiative corrections due to the interactions 

with their gauge bosons produce an unstable effective potential at the one-loop 

level. We may consider the effective potential to ber3: 

V(Q,a) = $/@I'+ $/@I4 (ln(21@12/v2) - T) 

(2.66) 

The condition that @ = veil/& minimize the ip part of the potential implies that: 

at which point the vacuum energy density is: 
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(2.68) 

In general we wish for the o field to minimize the potential at some other mass 

scale, u’/& Consequently, we have the relationship: 

(2.69) 

At the o minimum we have: 

and the stability of the theory at the (I = 0, ip # 0 minimum requires (constraint 

(1’11: 

qv > e’v’ (2.71) 

which is the analog of constraint (1). Besides f > 0, no further constraints are 

obtained. Unlike the case with ordinary scalar potentials, we find that the second 

non-trivial constraint arises from requiring that the extremum o = VI/& @ = 

ure”/fi (VI, ~2 # 0) not be the true minimum. Upon extremizing the potential, vr 

and ~2 can be solved from: 

8A(ul/v)21n(ul/v) + C(V~/U’)” = 0 (2.72) 

8(ur/w’)21n(vr/v’) + C(ul/u)’ = o (2.73) 

where A = (qv/ev’)’ > 1, C = p/x > 0, and we have introduced the parameter x: 

3eW 
’ = 64~~~2 

which is the analogue of a (p is defined as before, i.e., p = fu2/2p2). Because of 

the positivity of A and C, it is clear that ur < v and u2 < Y’. To find the parameter 

space (A, C) that represents the global minimum, we scan through the space (vr/v, 

Q/V’), solve for A and C, and then check that the energy is lower than that given 

by Eqn(2.68). This parameter space, which is not acceptable, is shown in Fig. 10. 

We see from Fig. 10 that a necessary condition (though not sufficient if A z 1) for 

stability of the theory at the (I = 0, @ # 0 minimum is: 
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(2.75) 

which is the analog for Coleman-Weinberg breaking of constraint (2). 

Now we use the variational ansatz of the preceding analysis. We again recover 

Eqn(2.9) and find presently for p: 

& - 0(10-a) (2.76) 

in the global case. The series does not terminate because of the expansion of the 

logarithm; we keep here terms to O(e-‘J“). 

Similarly, for the o field we find the energy functional per unit length: 

E(bO,n) = %(l + pz2F(s))u,2 - ~~~~~r + ~1~~~~ ln(ui/u’2) (2.77) 

We see here another manifestation of the modified constraint (2); if p -+ 0 this 

energy is unbounded below for n + 0; the lower limit on f prevents this catastrophe. 

We rescale the above Hamiltonian by letting 00’ = uf2$~/x. The energy then 

takes the form: 

E = ~~'*(25~[1 +pz'F(z)]+ &?[ln($) - $/8x 

Upon extremization of the energy with respect to se and z we obtain: 

PW(4 +d+)l+ f,'b(fo2/x) -3/21=0 

(2.78) 

(2.79) 

1 + @‘F(z) + &‘[ln(~~/x) - 11 = 0 (2.80) 

The solution to the upper boundary in this case does not correspond to <,’ = 0, and 

the boundary is more difficult to obtain. Given values of x and p, c,’ typically has 

two extremal solutions. However, the solution of interest can be obtained by the 

following requirement: E < 0. The extremal equations can be solved for p and x in 

terms of z and 9,. It is then possible to scan over the variational parameter space 

( z, se) and search for solutions satisfying the modified constraint (2). Results 

from such a scan are shown in Fig. 11. We see that the parameter space (x, 0) is 

very similar to the parameter space (a, /3) obtained with Higgs potentials. 
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III. Dynamics of Bosonic Superconductivity 

To recapitulate what we have done to this point, using our variational ansatze we 

have mapped out the regions of parameter space which allow bosonic supercon- 

ductivity, for both ordinary and Coleman-Weinberg scalar potentials (see Figs. 4 

and 12). Further, we have explored the regions of parameter space for the scalar 

potential where the o condensate significantly modifies the vortex solution itself, 

which occurs for a zz ,5 and rni/& = m:/X,. Throughout these analyses the su- 

perconducting current was taken to be zero. Presently we obtain the expression 

for the energy associated with superconducting currents, i.e., the kinetic energy 

of the charge carriers and the energy in the magnetic field. Throughout we will 

use our truncated ansatz. First we directly solve Maxwell’s equations without re- 

sort to a Green’s function expression (which Witten’ does); however, the usual UV 

singularities still occur and must be dealt with in a self-consistent manner. 

Consider phase fluctuations about the (I condensate obtained above: 

4r, 8, z, 4 -+ 9 exp(+(z, t)) (3.1) 

and we obtain the effective action for 4(.z,t) in the case of an infinite straight z-axis 

string: 

1 = ;/2m drdzdt ~~(r)~{(&qi- ~4~)~ -(a&- eA,)2} 

1 -- 
4 I 

d’z F,,vF"" + O(l/n2) 

We thus obtain the equation of motion for the I$ field and the vector potential: 

a$$ - a:4 ‘=, &%,A0 -&A,) (3.3) 

a,F'Y = eK(ZqS - eA”)62(sL)6z” (3.4) 

where: 

K = 
/ 

2mdr Gus (= m;/2n7 (3.5) 
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the latter result holding with our simple ansata. The interesting solution for our 
purposes corresponds to a conducting wire of length L with q5 topological winding 

number N; that is: 

27rN 
~=L%i A0 = A= = Au = 0 (3.6) 

and we obtain the remaining component of the vector potential: 

A, = -(constant) In (d-/L) (3.7) 

which describes a circumferential B field: 

B. = -(constant) y 
x2 + y2 

B, = (constant) = 
x2 + y2 

and the constant is determined by self-consistency with the current by way of 

Stokes’s theorem. The current is: 

iz = eK (a& - eA,(O)) 6’(z1) 

and we must interpret A.(O). Witten similarly encounters this subtlety in hi 
Green’s function solution and we simply define: 

A.(O) = (constant) In (nL) (3.10) 

(the lower cutoff is the size of our “wire”, - 6-l ). Then using Stokes’s theorem we 
obtain the result: 

eKN 

( 

-1 
(constant) = - 

L 
1+ $ln(rcL) 

i.,,: > 

We make the following definition: 

1 
w=- 1+ 

e2K [ 
2 In(&) 

I 

which is the ‘inductance per unit length” and the result for the B field becomes: 

B,=-?w y 
eLw 2* + 7~2 ’ 

B,=?v x 
eLid 22 + 9 ’ 
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Now, we may compute the resulting energy from the Hamiltonian: 

H = $ J 2zr dtdzqi(r)*(&c++ - eA,)2 + J dsr ; 

The a,&~ - eA. contribution is just 2x2N2/Le4w2K and’the,Ba/2 contribution is 

logarithmically divergent in the transverse dimensions which we cut-off at L, which 

yields nN* In(nL)/LeW. These terms combine to give the effective Hamiltonian 

per length of string: 

2x2NZ 
LZKw2e’ 

1+ 

2n2N2 1 
-WI2 = x=2 (3.15) 

where the current I = s dA j, = 2nN/eLw. We use electromagnetic units here, and 

elsewhere, that correspond to e2/4?r = CZEM, where CYEM = l/137 is the electromag- 

netic coupling constant. For reference, e GeV = 2.43 x 10’ Amperes. 

The ratio of the energy in the magnetic field to the KE of the charge carriers is 

eZKln(nL)/2z, and with our simple ansatz K = nu~/2nz. Upon using our previous 

extremal solution for ui and taking X, 5 1 (perturbativity) we find that for a large 

portion of parameter space K >> 1, as shown in Fig. 12. For the loops of interest 

L is a macroscopic (or even cosmological) length, implying that Ln > 1, and so the 

field energy is the dominant contribution when K >> 1. The energy associated with 

the supercurrent, in this case, is no different from that of an ordinary wire with 

current I. The only region of our parameter space (LY, p) that the kinetic energy of 

the charge carriers can have a significant contribution is near the upper boundary 

of solutions, where the u condensate is starting to become energetically unfavorable 

andK-t0. 

Superconducting currents can be induced in a cosmic string if it moves through 

a magnetic field in the Universe. Whether or not there were primordial magnetic 

fields in the early Universe is still an open and very important question which has 

been considered elsewhere”. We mention, however, that superconducting strings 
inherently have a non-zero winding number in the Q field (and hence current) since 

the phase of the o field must have been uncorrelated on the scale of the horizon 

E w tssB at the time of the symmetry breaking (t = tr~z) that gave rise to cosmic 

strings. This results in a winding number in a length of string L of of at least 
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- (LlW2, which leads to a minimum current that must be present (and which 

one might refer to as ‘the Kibble current’). 

IV. Critical Currents 

We now examine the breakdown of bosonic superconductivity. Collecting terms in 

the Hamiltonian associated with the o condensate gives: 

7rx,z2u; 
= +,z - ,@F(z) - 1)~; + 1g2~Lz + 

2n2NZK 

Lr(l+ eln(nL)) 
(4.1) 

using our simple ansatz for u and using the ordinary scalar potential. (Since this is 

a Hamiltonian per length, the last term is of the order of l/L’.) The current cannot 

be arbitrarily large because there will be a (critical) current beyond which it will 

be energetically favorable for the u field to become zero everywhere. Since 
( > 

k0 

vanishes for u = 0, the transition should occur when 
( > 

i?, becomes nonnegative. 

Although N is topological in nature, it can unwind in processes where u goes through 

zero (where the phase q5 is not well defined), which on energetic grounds should occur 

when the above Hamiltonian approaches zero. 

Notice, however, that we should display the full os behavior in this expression 

by restoring the expression for K obtained previously: 

Irx,z=u; 
= -~(c&@*F(z)-1)0,2+ 1g2/12 + 

If we could neglect the logarithm in the denominator of the last term, we could 

conclude that the phase transition when the critical current is reached is second 

order, i.e., the terms involving u(: would cancel. However, the logarithm is large 

and one can see by plotting this expression (for some tixed z) as a function of uc 

that there is a second local minimum for a wide range of currents. This minimum 

can correspond to a positive energy and thus be a false vacuum state. Therefore, 

the string should undergo a first order phase transition, presumably through the 

nucleation of bubbles which are regions of true vacuum and are not superconducting. 

Of course, false vacua can be met&able and the full analysis requires considering 

variations in both z and oe. This study is currently in progress”. We will content 
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ourselves to defining absolute stability when (H,) < 0. This gives a definition of the 

critical current, i.e., when (He) = 0 we have a critical situation, though this may not 

correspond to a physically reasonable critical current and may be an underestimate. 

This critical current can easily be estimated by using the unperturbed extremal 

solution for oi from Eqn(2.49) and equating the r.h.s. of Eqn(4.2) to zero. The 

result for the critical current found in this way is: 

&tit = p d- E(az - PF(z)z - z-1) 
In the limit K >> 1 the critical current takes the form: 

“lit = %l* 
(oz-@F(z)%-z-r) (4.4) 

This limit is convenient to display since the X, and logarithmic dependence is now 

multiplicative. The factor involving z, a, and p can be computed, and in general is 

of the order of a. The allowed parameter space for the critical current in this limit, 

as a function of (Y, is shown in Fig. 13. 

V. Static Loops 

We will now explore the possibility that a loop of string can be stabilized against its 

string tension by electromagnetic stresses and achieve a static, or floating state’,‘. 

That this could occur is easy to see. Neglecting numerical factors, the energy of a 

loop is w (string tension * U* ) XL + Liz/2, the first term representing the energy 

due to the string tension and the second due to the electromagnetic field. As a loop 

oscillates it radiates both electromagnetic and gravitational radiation, and in the 

process must shrink in size. Conservation of the winding number N means that 

the supercurrent I cc N/L must increase, and so the magnetic field energy varies 

as l/L, whereas the potential energy of the string varies as L. Assuming that the 

string remains superconducting (so that N is constant) the loop will reach a state of 

minimum energy for L = L,t.fic - N/O, where it can no longer decrease its energy 

by shrinking, and the string tension is balanced by electromagnetic stresses. 

To consider loops of string in our present framework which is strictly only appli- 

cable to inlinitely long strings, we require that the scale of the fields be muchsmaller 
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than the curvature of the loop: pL >> 1, nL >> 1, hL >> 1. The ideal approach 

to search for static loops would be to extremize the full Hamiltonian with respect to 

o, n, ,u, and L, and search for solutions consistent with our constraints. However, 

we will restrict ourselves to the case where the loop is stabilized by currents that 

are smaller than the critical current, and so we will not address the question of 

me&table, supercritical static loops. By so restricting ourselves, we are able to use 

our previous results, i.e., our variational parameters do not change in the presence 

of the current. This amounts to requiring that the energy in the current not ‘back 

react’ upon the rest of the Hamiltonian. In what follows we consider the case of 

the usual scalar potential, although some of the results are essentially independent 

of the form of the potential. 

We write the energy of a superconducting loop, in units of n@, as follows: 

E(L) = Lb + win WIL - J&L + L[l + glntnLj, 

where B, includes all the sigma dependent terms except for those associated with 

the charge carriers and magnetic field, given by C,,, and A* contains the remaining 

terms depending only upon @, which are independent of the loop length L. In the 

global case w = 1, and in the gauge case u) = 0. The quantites A., B,, and C, are 

determined from Eqns(2.21) or (2.12) and (4.1). In general the energy per length 
of a superconducting string (with subcritical current) must be less than that of an 

ordinary cosmic string since the o contribution to Eqn(5.1) is necessarily negative. 

Note that the coefficients A#, B,, and C, are all positive. The length of loop 

that minimizes the above energy, and represents the static state, is: 

CC76 112 
L 

‘totie = [A + w + w ln(pL) - B,][l + $ln(nL,t,ti,)] 
(5.2) 

where 

&c 
6=1+ 2* 

1 + $$ln(~L,t,ti,) 

Requiring L #totie to be real gives us the condition that A* + w[l + In (pL)] > B,. 

A stable static configuration may be obtained if the critical current is not ex- 

ceeded in the static configuration: this means that the sum of the last two terms in 



-26 FERMILAB-Pub-87163-A 

Eqn(5.1) must be negative. We define the critical loop size, Lc,itie.i, to be the loop 

size for which the loop current is equal to the critical current: 

( 

CO 

> 

'12 

Litie.1 = 
Bc[l + $$ In (&rilieaI)] 

(In calculating Lcritical we have ignored the back reaction of the current upon the 

vortex and the condensate; including the back reaction may modify this result 

slightly.) Since we are seeking subcritical floating solutions, we must have LLtDtic > 

Lcritied (to be perfectly safe we should probably require L ntatic 2 3Leritisal SO that 

the back reaction of the current upon the vortex is less than - lo%, and can be 

neglected). Using Lat.tie > Lccticol as the criteron, we see that static loops are 

possible only if: 

0 < A@ + 4 + w41 - B, < 6Bo [1 + ~,n(nLst,t*,), (5.5) 

If we require nL/r > 10 so that our variational approach is not invalidated by 

curvature effects, we must have 1 5 6 < 1.3. It is then apparent that the energy in 

the vortex is very close to that in the condensate (true for global or gauged loops), 

which is not surprising since a static string implies an equal balance of the energy 

between the o and @ fields. The energy per length of a static loop is 

T = [A* + wln(pL) - B,][l + i] + f (5.6) 

For a given set of parameters that specify the potential Aa and B, are fixed. 

However, C, depends upon the winding number. In the canonical scenario of cos- 

mological loop production, loops of size LO are continuously formed by breaking off 

from infinite strands of string when the age of the Universe is about ts - L~‘6J’. 

This results in a loop having a winding number N of at least - (ts/[)‘/r. Taking 

N cc (1s/[)‘/* leads to a spectrum of static length sizes: L.torie a tt”. 

We now check to see if the concrete vortex approximation is appropriate for our 

study of static loops (and find out that it is not). The concrete vortex approximation 

is valid when: 

~pz’F(z)o~ << Aa + wln(pL) (5.7) 
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Because we are considering static loops, A+ + wln(pL) w B,, and inequality(5.7) 

becomes: 

@*F(z) << ;[a~’ - &z’F(z) - 11 (5.8) 

A scan of the parameter space reveals that this condition is never satisfied, and 

there is always significant back reaction onto the vortex. This immediately locates 

the only possible region of parameter space where static loops might exist: 

4 -se 
h 

;+- ,=a) and as@ 

Since there is back reaction we must now consider the global and gauged case 

separately. 

A. The Global Case 

For a global loop, w = 1, and for an ordinary scalar potential: 

A* = i - In(y) + g 

and upon using our simple ansatz for o: 

B, = 3 (dd* - P’z’*F(z’/y) - 1)’ 

(5.10) 

From Eqn(5.5) it follows that the criterion for stable static global loops is: 

A@ + 1 + ln(psL) - B, < 1.3B, (5.12) 

Since the size of zhe loop’enters into the criterion, for a given potential there is 

always a maximum length L,, beyond which stable, static global loops do not 

exist: 

&,,,.z = exp(2.3B, - Ac - 1) (5.13) 

For lengths bigger than w L,, the critical current is reached before the loop shrinks 

to its static length. Recall that there is a minimum length we can consider without 

having to worry about loop curvature effects: 
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kiLmin = 1OTY (5.14) 

This leads to yet another constraint: L,,, > L,i,. We note that small values of 

the ratio L m../Lm;n imply that static global loops were only be produced during a 

very short cosmological time, early in the history of the Universe. 

As mentioned before, the variational equations can be solved for the parameters 

Q’ and p’ in terms of z and y. For the choice 7 = lo-’ we show the (I’, p’ parameter 

space for Lmol/Lmin > 1, 1000, and 10” in Figs. 14, 15, and 16. We see that loops 

much larger than the minimum length occupy an increasingly smaller portion of 

parameter space. 

B. The Gauged Case 

In the gauged csse we do not encounter the peculiarity encountered with static 

global loops, i.e., the energy per length of the vortex is independent of the size of 

the loop. Static loops are more natural in this sense, as the existence of floating 

solutions only depends upon the parameters of the potential, and not also upon 

Llraitie ss it does in the global case. However, here too floating solutions only occupy 

a very small portion of parameter space. From Eqn(5.5) it follows that our criterion 

for static gauge loops is: 

The full Hamiltonian, given by Eqn(2.62), was numerically minimized for 7 = 

lo-’ for three different values of b: 0.01, 1, and 100. Superconducting solutions 

satisfying the above constraint are shown in Figs. 17, 18, and 19, where we plot 

CY’ vs. p’ for each value of b. In each case, the allowed region of parameter space 

for floating loops is very small. To gain a proper perspective of just how small this 

parameter space is, we note that for the aforementioned cases the area of our static 

solutions to that of our superconducting solutions is N 1 : 1000. 

To summarize floating loops, we find that there is a small region of the parameter 

space of solutions where stable, static solutions exist, ss specified by: 

f-d%/3 m, L- m*(X,/X*)‘f’ (5.16) 
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VI. Model Building 

In this section we describe a procedure for choosing the 5 parameters of the poten- 

tial: 

V(v,u) = -miv2/2 + 4! - mzu’J2 + 
X,u’ 3rni 
7 + fv2uZ/4 + jj-- 

* 
(6.1) 

such that superconducting vortex solutions exist. However, we first discuss the 

natural values for the parameters f, Xe, and X,. The coupling f can be arbitrarily 

small since it is multiplicatively renormalized (note that this requires no mixing 

between the U(1) and V(l)’ gauge bosons and is special to our model; it may not 

be a general feature of this mechanism in other settings), but it cannot be larger 

than - 1, the point perturbativity is lost. It is clear that X, and X0 cannot be 

arbitrarily small since the exchange of o and @ loops require - f* counterterms. If 

we try to define the renormalized theories with X, and Xe smaller than - f * we will 

have the values of physical quantities like Q determined by effective potentials of 

the Coleman-Weinberg type rather than by the tree approximation potentials, and 

we will effectively recover the same constraints. Moreover, for small f the gauge 

loop corrections require that X, exceed - e’ and & exceed - q’. For global loops 

q = 0, and for gauged loops q2 = brni/tP (which requires Xe 5 bm2). We then see, 

in the gauged case, that the natural range for b is: lo-* 5 b 5 lo* (where we also 

assume that q is of the general order of e). For b 2 lo2 the appropriate effective 

potential is that of the Coleman-Weinberg type, and for b 5 10-r a non-linear o 

model approximation becomes appropriate. 

We presently describe a method, though not unique, that allows one to construct 

a potential which permits bosonic superconductivity. This can easily be done with 

the aid of several of our graphs for the case that there is negligible back reaction- 

which is a good approximation unless (r FJ p, and in any csse is always a good 

starting point. 

One can first pick the quartic couplings and f (consistent with perturbativity 

and the Coleman-Weinberg limit), and b if the string is gauged. This determines 

0: 

P=SfalX, (6.2) 
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where a can be determined from Fig. 2. In the global case, a = 1.6, while in the 

gauge case, a is typically of the order of unity. Constraint (1) and Fig. 4 restrict 

the possible choices of Q: 

m4l7, 4P)l 5 Q 5 min[p,a&JTJ (6.3) 

where o(p) is the upper boundary in Fig. 4, which for p 2 50 is given by: o(p) N 

l.43p”.s2. For solutions to exist at all, X,, Xe, f, and b must be selected accordingly, 

i.e., e- 2 l/7. Finally, any values of me and m, may be picked consistent 

with: 

rnz/rni = a/a (6.4) 

If for the parameters chosen, a N p and a u am, back reaction is likely to 

be important, and one may wish to take it into account (see Sec. IIB). 

As an aside, we mention how one can arrange the potential to have static loops. 

If the parameters X,, Xe, and ma are selected, the other parameters are essentially 

determined: 

l/d 
ma-m* and 

The Coleman-Weinberg limit is automatically satisfied in this case. 

VII. Concluding Remarks 

Let us summarize our work. By using simple variational ansatze we have studied 

a number of important properties of cosmic strings. First, we have computed (to 

an accuracy of better than 2%) the energy per length of ordinary gauge cosmic 

strings as a function of b = 6q*/Xa = 2m$/m$; our results are displayed in Figs. 

1 and 2. It is very apparent that the energy per length is insensitive to b. Since 

the critical temperature for the phase transition which produces cosmic strings 

T. - U(l + b)-‘12 0: (1 + b)-‘/*(energy/length)‘/z, this implies that for cosmic string 

of 6xed string tension, one can by appropriate tuning of Xe (i.e., b B 1) make T, 

much smaller than its natural value - (energy/length)‘/‘. This fact may be of some 



-31- FERMILAB-Pub-87163-A 

importance if one is interested in producing cosmic string in inflationary Universe 

models’*, where the temperatures reached after inflation are typically much, much 

smaller than o - lOi - 10’s GeV, the scale associated with the energy per length 

required for ‘cosmologically interesting’ strings. 

Second, we have mapped out the scalar potential parameter space for bosonic 

superconductivity. The parameter space of solutions is shown in Figs. 4 and 11, and 

the constraints are summarized in Table II. From our analysis it is quite apparent 

that bosonic superconductivity does not require a fine-tuning of the parameters in 

the scalar potential, and in fact may be quite a generic phenomenon. 

Our study of the dynamics of bosonic superconductivity included a quantitative 

discussion of the critical current, which we define to be the current such that the 

energy associated with the o condensate becomes non-negative (at which point 

it becomes energetically favorable to the system to disperse the o condensate). 

Our analysis indicates that in general the quench transition is likely to be first 

order; however, the question of met&ability of supercritical currents must still be 

addressed. 

With the exception of a small region of the solution parameter space, the ‘back 

reaction’ of the o condensate upon the vortex itself is small (see Fig. 4), and the 

o condensate can be treated as existing on a ‘concrete flux tube’. For LT FS p and 

m:/xo = ml,/& (so that f - (X,Xs)‘/z/3) the back reaction can be significant. 

In this regime, gauge or global strings may be able to achieve a static (or floating) 

configuration for subcritical currents; however, since the back reaction is significant 

the analysis is difficult, and it is probably still premature to say with confidence 

that such states are possible. We can say with confidence that the parameter space 

which allows bloating configurations is very tiny (see Figs. 14-19). 

There are still ‘a number of important issues to be addressed. Precisely how does 

a superconducting string quench when the critical current is exceeded, and does the 

quench lead to detectable effects (e.g., UHE cosmic raysr)? While it has been shown 

that fermionic loops cannot achieve a floating state by the support of the kinetic 

energy of the charge carriers alone, no thorough analysis similar to ours has yet 

been performed which includes the electromagnetic stresses also. Our results for 

the bosonic case would suggest that the possibility is unlikely. 

Finally, there is no particular obstacle to extending variational analyses of this 
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type to a large number of related cosmic string issues. For example, of considerable 

importance is a microphysical understanding of cusps lg. Cusps arise as singularities 

in the world sheet description of cosmic strings, but are clearly nonsingular configu- 

rations of the @ and o fields. It seems interesting to us to develop a similar analysis 

of the o field in the presence of, say, a concrete cusp ,Ar the @ field to answer the 

question of what, if any, are the changes in the critical current and the energetics of 

the (I condensate at the cusp. For example, we wish to know if superconductivity 

is destroyed by a cusp of given extrinsic curvature for a given value of the local 

current. This study is currently in progress. 
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Figure Captions 

1. In (a) we show the energy per length of the gauged vortex over the natural 

range of b = 6qz/& = 2mf,/m$. Our numerical results are well fit (to better 

than 5 %) by energy per length = 1.19n5ab-0~1Q6; nere D = dw is the 

VEV of the real part of the @ field. For completeness, in (b) we show the 

energy per length over an extended range in b. 

2. The parameter a = mi/p* vs. b for the gauged vortex. The width of the 

vortex fi-’ - firnil. 

3. The variational parameter a (a the ratio of the size of the magnetic flux tube 

to that of the vortex) is shown vs. b. 

4. The allowed a, p parameter space for superconducting solutions with the 

ordinary unstable scalar potential. The region between the two solid lines is 

the allowed region mapped out by our simple ansatz; the dashed line is the 

upper boundary obtained from our full four-parameter ansatz. For a 2 10, 

the upper boundary from the full ansatz is p = O.~CZ’.~~; for a 5 10 the upper 

boundary is p N 1.32~&~~. The solid triangles indicate regions of parameter 

space where the back reaction of the o condensate on the vortex is significant 

(so defined by y 2 1.2) for 7 = lo-‘, lo-*, and 10es. 

5. The variational parameter z (= the ratio of the size of the condensate to that 

of the vortex) is shown vs. o. 

6. The allowed a’ parameter space as a function of y for a global string with 

7 = 10m3. Significant deviations from the concrete vortex model occur for 

large y. 

7. The allowed ,0’ parameter space as a function of y for a global string with 

-y = 10-s. 

8. The allowed a’ parameter space as a function of y for a global string with 

7 = 10-s. 

9. The allowed p’ parameter space as a function of y for a global string with 

y = 10-s. 
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10. The region of parameter space (A = (qv/ev’)*, C = p/x) that corresponds to 

a true vacuum with < o >, < @ ># 0. This region, which corresponds to 

electromagnetism being broken far from the vortex, is strictly disallowed. 

11. The ,v, p parameter space of solutions for superconductingvortices for Coleman- 

Weinberg potentials. 

12. The a, p parameter space of solutions consistent with KX, > 100. In this 

region the magnetic field energy dominates that of the KE of the charge 

carriers. Solid lines indicate the entire parameter space of solutions. 

13. The critical currents of bosonic superconducting strings are shown ss a func- 

tion of a, for all possible choices of p consistent with KX, > 100. 

14. The allowed cy’, p’ parameter space for a floating global string with 7 = lo-’ 

ad Lmoz/-Ln 2 1. 

15. The allowed a’, p’ parameter space for a floating global string with 7 = lo-’ 

and Lno=/Lmin 2 1000. 

16. The allowed ~2, p’ parameter space for a floating global string with 7 = lo-’ 

and L,,,JLe,, 2 lOlo. 

17. The allowed DL’, p’ parameter space for a floating gauged string with 7 = lo-’ 

and b = 0.01. 

18. The allowed ~2, p’ parameter space for a floating gauged string with 7 = 10~’ 

andb=l. 

IQ. The allowed cz’, p’ parameter space for a floating gauged string with 7 = 10~’ 

and b = 100. 
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Table I. Summary of Parameters for the Scalar Potential: 

V(v,u) = -miv1/2 + * + 2 - mzu2/2 + G + fu*t?/4. Primed quantities 

are related to their unprimed counterparts by: a’ = a/y*, s’ = Sy, a’ = a/y*, 

z’ = yz, and p’ = p/y’ (see Sec. IID). 

7 

- 

kameter: Definition: Comments: 

u ii* = em:/& VEV of the real part of @ 

a Wp* size of vortex = film, 

for a global string a c= 1.6; 

II for a gauged string a w order unity 

b II q*tJ*/m: = 6q*/Xa 2 times the 

ratio of the squares of vector 

to scalar masses 

8 filh ratio of the size of the magnetic flux 

tube to that of the vortex 

a ma/p* cd am: /mi convenient normalization for 

ma by vortex scale cc* 

P f@I2$ m 3af/Xe convenient normaliiation for 

interaction by vortex scale p2 

z P/K ratio of the size of o condensate 

to that of vortex 

Y PQIP true size of vortex to that 

obtained in concrete vortex 

approximation 

7 3&0*X, = (X+/X,)/2a in terms of-y constraint 1 is: 

a < (a/2-y)‘/* 

X 3e4v’*/64x2~z analogue of a in the 

Coleman-Weinberg case 

- 
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Table II. Summary of Constraints on a Bosonic 

Superconducting Cosmic String with 

Unstable Quartic Scalar Potential 

Constraint: Comments: 

(1) mi/h > mLtl& Stability of vacuum against 

breaking of electromagnetism 

(2) P>Cf Stability of vacuum against 

Existence of floating solutions 
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